Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 126: 155443, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394737

RESUMO

BACKGROUND: Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder in which social impairment is the core symptom. Presently, there are no definitive medications to cure core symptoms of ASD, and most therapeutic strategies ameliorate ASD symptoms. Treatments with proven efficacy in autism are imminent. Ligustilide (LIG), an herbal monomer extracted from Angelica Sinensis and Chuanxiong, is mainly distributed in the cerebellum and widely used in treating neurological disorders. However, there are no studies on its effect on autistic-like phenotypes and its mechanism of action. PURPOSE: Investigate the efficacy and mechanism of LIG in treating ASD using two Valproic acid(VPA)-exposed and BTBR T + Itpr3tf/J (BTBR) mouse models of autism. METHODS: VPA-exposed mice and BTBR mice were given LIG for treatment, and its effect on autistic-like phenotype was detected by behavioral experiments, which included a three-chamber social test. Subsequently, RNA-Sequence(RNA-Seq) of the cerebellum was performed to observe the biological changes to search target pathways. The autophagy and ferroptosis pathways screened were verified by WB(Western Blot) assay, and the cerebellum was stained by immunofluorescence and examined by electron microscopy. To further explore the therapeutic mechanism, ULK1 agonist BL-918 was used to block the therapeutic effect of LIG to verify its target effect. RESULTS: Our work demonstrates that LIG administration from P12-P14 improved autism-related behaviors and motor dysfunction in VPA-exposed mice. Similarly, BTBR mice showed the same improvement. RNA-Seq data identified ULK1 as the target of LIG in regulating ferritinophagy in the cerebellum of VPA-exposed mice, as evidenced by activated autophagy, increased ferritin degradation, iron overload, and lipid peroxidation. We found that VPA exposure-induced ferritinophagy occurred in the Purkinje cells, with enhanced NCOA4 and Lc3B expressions. Notably, the therapeutic effect of LIG disappeared when ULK1 was activated. CONCLUSION: LIG treatment inhibits ferritinophagy in Purkinje cells via the ULK1/NCOA4-dependent pathway. Our study reveals for the first time that LIG treatment ameliorates autism symptoms in VPA-exposed mice by reducing aberrant Purkinje ferritinophagy. At the same time, our study complements the pathogenic mechanisms of autism and introduces new possibilities for its therapeutic options.


Assuntos
4-Butirolactona/análogos & derivados , Transtorno do Espectro Autista , Transtorno Autístico , Fenilacetatos , Camundongos , Animais , Ácido Valproico/efeitos adversos , Transtorno Autístico/induzido quimicamente , Transtorno Autístico/tratamento farmacológico , Transtorno Autístico/metabolismo , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/metabolismo , Células de Purkinje/metabolismo , Camundongos Endogâmicos , Modelos Animais de Doenças
2.
Neuropsychopharmacology ; 49(3): 497-507, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37491673

RESUMO

Autism spectrum disorder (ASD) is a complicated, neurodevelopmental disorder characterized by social deficits and stereotyped behaviors. Accumulating evidence suggests that ferroptosis is involved in the development of ASD, but the underlying mechanism remains elusive. Puerarin has an anti-ferroptosis function. Here, we found that the administration of puerarin from P12 to P15 ameliorated the autism-associated behaviors in the VPA-exposed male mouse model of autism by inhibiting ferroptosis in neural stem cells of the hippocampus. We highlight the role of ferroptosis in the hippocampus neurogenesis and confirm that puerarin treatment inhibited iron overload, lipid peroxidation accumulation, and mitochondrial dysfunction, as well as enhanced the expression of ferroptosis inhibitory proteins, including Nrf2, GPX4, Slc7a11, and FTH1 in the hippocampus of VPA mouse model of autism. In addition, we confirmed that inhibition of xCT/Slc7a11-mediated ferroptosis occurring in the hippocampus is closely related to puerarin-exerted therapeutic effects. In conclusion, our study suggests that puerarin targets core symptoms and hippocampal neurogenesis reduction through ferroptosis inhibition, which might be a potential drug for autism intervention.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Ferroptose , Isoflavonas , Masculino , Animais , Camundongos , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/tratamento farmacológico , Ácido Valproico , Modelos Animais de Doenças
3.
Behav Brain Res ; 445: 114384, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36889463

RESUMO

Autism spectrum disorder (ASD) is a complicated, heterogeneous disorder characterized by social interaction deficits and repetitive stereotypical behaviors. Neuroinflammation and synaptic protein dysregulation have been implicated in ASD pathogenesis. Icariin (ICA) has proven to exert neuroprotective function through anti-inflammatory function. Therefore, this study aimed to clarify the effects of ICA treatment on autism-like behavioral deficits in BTBR mice and whether these changes were related to modifications in the hippocampal inflammation and the balance of excitatory/inhibitory synapses. ICA supplementation (80 mg/kg, once daily for ten days, i.g.) ameliorated social deficits, repetitive stereotypical behaviors, and short-term memory deficit without affecting locomotor activity or anxiety-like behaviors of BTBR mice. Furthermore, ICA treatment inhibited neuroinflammation via decreasing microglia number and the soma size in the CA1 region of the hippocampus, as well as the protein levels of proinflammatory cytokines in the hippocampus of BTBR mice. In addition, ICA treatment also rescued excitatory-inhibitory synaptic protein imbalance by inhibiting the increased vGlut1 level without affecting the vGAT level in the BTBR mouse hippocampus. Collectively, the observed results indicate that ICA treatment alleviates ASD-like features, mitigates disturbed balance of excitatory-inhibitory synaptic protein, and inhibits hippocampal inflammation in BTBR mice, and may represent a novel promising drug for ASD treatment.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Camundongos , Animais , Transtorno Autístico/metabolismo , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/metabolismo , Doenças Neuroinflamatórias , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Inflamação/metabolismo , Hipocampo/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Comportamento Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...